
I

Iocatlonl(lnput ,siot(’LOCATI0N ’,x)) :_ locati (input ,X) .
Iocatlon2(lnput ,slot(‘t OCATION ’,X)) : - locat2(Input .X).
locati (lnput ,cons(X ,t .ist)) :— loc(Input ,X), Iocat2(input ,L ist).
iocat2(lnput ,cons(X ,List)) :— Ioc(lnput ,X), Iocat2(lnput ,List).
Iocat2(_ ,nil).
loc(sL ,_,_ ,~~,Vmods) , Slot):-

flll _ slot(Vmods ,[’ALONG’ ,’A T ’,’L A ST OF ’ ,’lN’,’OVER’), ’LOC ’,Slot)
Ioc(sL ,NP , ,),NP):- test_ nhead(pJp,’LOC ’).
3.3.3.7 ‘mission ’
mission(s(, , ,..... ,Vmods) .slot(’MiSSiON=’, Slot)):-

filLslot(Vmods , [‘AFTER’ , ‘FROM’ ,’lN’ ,’ON ’J, ‘ACTY ’ , Sk t).
mission(s(, ,NP , ,_),slot(’MlSSI0N~’,NP)):- test . rmead(NP,’NOMZ’).
missionL.. ,ni l) .

3.3.3.8 ‘nationality ’
nationality(L,st , Feature ,slot(’NATIONALIIY= ’, W)):- member(nnode(W ,_),List) ,

feat(W ,Feature).
nationality(List , Feature ,slot(’NAT IONALiTY= ’,W)):- member(W ,List) ,

feat(W ,Feature).
nationality(, nil).

3.3.3.9 ‘object’
objecti (NP ,slot(’OBJEC 1= ’, Slot)):- test_ nh ead(NP ,’A C H A~ I ‘),

construct(’AIRCRAF I ‘,NP, Slot).

3.3.3.10 ‘path’

path(Vmods ,slot(’PAT H =’, Slot)):- filL rlot(Vmods ,[’VIA’], ’LOC’,Slot).
path(_ ,nhI).

3.3.3.11 ‘setspec ’
setspec(dp(, ,Num),sIot(’NUMBER~’,Num).
setspecL , nil).

3.3.3.12 ‘source’

source1(Vmods ,slot(’ SOURcE~ ’, Slot):- ttll _ slot(Vmods ,[’l-HGM’ j, ’L OC ’,Sk’t).
source2(X,Y):- source 1(X ,Y).
source 2 (_

~ ,nil).

3.3.3.13 ‘stagingbase’
staglngbase(Ust ,slot(’ST AG l~ G13As~ ~~

‘
, Slot):- tilLslot(List ,[’AT ’j .

‘LOC ’,Slot).
ataglngbase(_ ,nil).

3.3.3.14 ‘subordination ’
subordination(1 ist ,slot(SUB0R[)INA Tl~ ~Nr ‘) ,~~k~t ~

) -

till slnt(1 ist ,j ~l-ROM’J. SI I~Nt IM ,SIot
subordlnation(- nil).

1— :~

- - V V _
~~~~~V~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

- -



-~~~~~~~~~~~~~ 
_ _ _

3.3.3.15 ‘the m’ (the threat )
them(Vmods ,slot(’THEM=’, Slot):-

fill _ slot(Vmods , [‘AGAINST’ ], ‘NATION ’, S ot).
themL ,nhi).

3.3.3.16 ‘time ’
time(Vmods ,slot( ’T IM E ~~

‘
, Slot):-

f lnd .. t ime(Vmod s ,[’AT ’ ,’BE T WEEN ’,’By ’,’DURING’,’SINCE’],’TYME’
Siot).

time(Vmods ,slot(’ TIME = ‘,Slot) : -
find _ t ime(Vrnods,[ Al ‘,‘EW rwEEN ’,’BY’ ,’DuR1NG’ ,’slNcE’],’4olG’,

Slot).
time(Vmods ,slot( ’TIMF =’,SIot):-

fi ll_ slot(Vmods,[’AT’,’13E TWEFN ’,’BY’,’DURING’,’sINCE’],’TVME’,
Slot).

time(Vmods ,sIot(’T lME~ ’, Slot):-
fill slot( Vmocls , ‘TY ME ’,SIot).

tlme(_ ,nil).

3.3.4 Other Procedures

3.3.4. 1 ‘f i I l . ~s/ o t ’
fill slot(List , Prepl is t , Feature ,[L 1 ,Prep,NP]):-

member (pp(L1 .Prep,NP),List),
member(Prepa , Preplist), lexeq(Prep,Prepa) ,

test_ nhead(NP, Feature).
Given the Vmods list , a list of prepositions Preplist , and a lexIcal feature Feature ,
‘f i l l _ slot ’ sear ches the Vmods list f or a prepositional phrase (pp), such that Prep is a
member of Preplist and the headnoun of NP has the feature Feature. ‘f i l l _ slot ’ returns
the prepositicial phrase ‘pp ’.
f ill_ slot( List , Fedture ,W):-

memt)er (Wa , List) , Iexeq(W ,Wa),
feat(W ,’ADVB’),
fea t(W , Feature).

Given the Vmcds list and a lexical feature Feature, tilL slot’ searches the Vmods list for
an adverb with feature Fentt i re ,and returns the adverb.

f l l I _ slot(NP , Feature ,NP):- test _ nhead(NP,’LOC’).

3.3.4.2 ‘fini i.feat ’

find_ feat(W ,L ,Y ) :—
member(Y ,L),

fea t(W ,Y).

‘tlnd~ f e a t ’ takes as arguments the dict ionary entry of a word W, a list of atoms naming
templates available in the system (L), and returns a va lue for the vari able Y, such that V
Is a member of L, and Y Is a feature of W .

- ~~~~~~~~~~~~~~~~~~~~



r1p~ - -- - ——i .- -—
~~~~~~~

-

~~
-— _ . - V - ~~~~~~~~~~~~~~~~~~~~

3.3.4.3 ‘find.t..name ’ ‘Find _ t_ nam e ’ Is a procedure for finding the name of the tern-
plate to be actIvated for the Interpretation of a particular input structure. ‘find.. t - n a m e ’
has two entry points according to whether the template tiame sought is derivable from a
verbgroup or from a noun .

3.3.4.3.1 The template name Is derivable from a verbgroup:-
flnd _ t~ name(vg(_ , - , ,W),Name): -

f lnd feat(W ,[’ARR IVE’ ,DEPART’ ,DEPLOy’ ,’ENRO U TE ’ ,’F L I G H T ’,
‘LOCATE’ ,’PENE T R AT E’,’PRECEDE’ , R ECOVER ’,
‘RETURN’],Name).

3.3.4.3. ’~’ The template name is c’erivabie from a flOUn:-

f lnd _ t_ n. me(nnode(W ,_),Name):-
f ind fea t (W ,[’A IRCRAFT’], Name).

3.3.4.4 ‘find.time ’

flnd_ t ime(L I st , Prepl is t, Feature ,[L 1 ,W ,L2]):-
member(pp(L1 ,W,L2) ,List) ,
member(Wa ,Preplist) , lexeq(W ,Wa) ,
member(X ,L2),
feat(X ,Feature).

3.3.4.5 ‘test.nheaci’

tesLnhead(np(_ ,_ ,nnode(W ,_),_),Feature) :- feat(W ,Feature).
‘tesLnhead’ determines whether the head noun (W) of the input np the feature
Feature.

3.3.4.6 Llstdefinition
llst([]).
llst(X ,L):— llst(L).

3.3.4.7 Listmernbership

member(X,fX,.._]).
member(X ,[_,..L]):- mernber(X ,L).

3.3.5 Syntact/c Normalization Rules.
3.3.5. 1 Nominalizations. The rules listed below apply to nominalizations in subject posi-
tion and/or nominallzations in object position.

3.3.5. 7 . 1 Restructuring ‘Passive ’ Nounphrases.
Example: A WEATHER RECONNAISSANCE FLIGHT BY ONE

PRETORIA BASED SP-256 B-80 (BEACON)
TO THE CAPE VERDE ISLANDS.

change(np(Det ,[1 1 ,X], nn ode(W ,O) , [X 1 ,pp ,by,Y) ,X2]),
s(Y ,vg(_ ,.... . , ,W) ,np(Det ,L 1 ,nno de(X ,O),[]),_ ,[X 1 ,X2])) :—

test,. nhead(Y,’NOMZ’).

1 - 7

-

~

-— -~~~~~~ -~~~~- -~~~

-V.- - - - -

3.3.5.1.2 Restructuring ‘Acti ve ’ Nounphrases
Example) ; UAF B-Tb DEPLOYMENTS TO MAURITII.IS
change(np(Det ,[L 1 ,X],nnode(W ,O), L2),

s(np(Det ,L1 ,nnode(X ,O),[]),vg(..- , , W) , O,O,L2)).
Exampte2; DEPLOYMENT OF 12 AIRCRAFT TO KIGALI
chango(np(Det 1,11 , nriode(W 1 ,pp(_ ,of ,np(Det2 , L 2 ,nnode(W2 ,O),[)))), 13),

s(np(O ,[L2],nnode(W2,O),[]),vg(, ,_ ,W 1) ,O,O,L3)) :—
fea t (W2 ,’acraft ’).

3.4 Event Recor d Synthesis, an Example
Before presenting an example of how templates are executed by ERL, a word should be
said about the control mechanism employed by the system.
3.4. 1 ~he ERL Control Mechanism. Prolog provides a remarkably simple form of Control ,
which suffices for many pract~cac applications.

The declarative sem antics of Prolog clauses is such that the ord2r of the goals in a
clause and the order of the clauses themselves are both irrelevant to the declarative
interpretation. However , these orderings are generaliy significant in Prolog, as they con-
stitute the main control information.

When the Prolog system is executing a procedure call, the c lause ordering determines
the order in which the different entry points of the procedure are tried. The goal order-
Ing fixes the order in whic h the procedure calls in a clause are executed. The ‘produc-
five’ effect of a Prolog computation arises from the process of ‘matching’ a procedure
call ~galnst a procedure entry point.

3.4.2 Step by Step Description of the Synthesis Process. In this section we descr ibe by
means of an examnle how [RI template representations drive event record synthesis.
Consider the following example:

(1) THiS AiRCRAF T ROUTINELY PRECEDES UAF 8-75 DEPLOYMENTS TO MAURITIUS.
As pointed out pcev~ousiy, one of the basic principles underlying our approach to the
content analysis of narrative text is that the structural descriptions at all levels of
analys s should be homogeneous. Sentence (1) above was chosen precisely because it
allows us to show how the same formalism lends itself naturally to the description of
structures and processes at several levels of grammatical description thus providing a
homogeneous approach to the interpretation of the syntactic structures output by the
ATN. Specifically, the le vels of gram matical description involved In the analysis of (1)
are:-

• Syntactic normai zation;

• the description of objects (aircraft);

• the description of an atomic event (‘deployments ’);

• the description of a text-level relation (‘prece de’).
Sentence (1) states that certain deployments are routinely preceded by a certain flight.
Notice that syntactically, (1) is a simple sentence of the form Subject , Verb , Object.
Conceptually, however , it is a complex structure in which the main verb ‘precede ’

1-28

L~~~~~~~~~~~~~~ .
.

V
V

—

~~~~~~~~

—- - - -

functions as a text-level relation locating two events on the time line. The two events
are linguIstIcally encoded as the subject and the object of the verb ‘precede ’. Note that
the subject is ‘this aircraft ’ which, although syntactically a simple noun phrase ~1escrib-
Ing an object , is understood as ‘the flight of this aircraft ’, i.e., it is understoc~l as the
description of an event. This Is information which does not reside in the actual text , ..nd
which will eventually be supplied by an inferential component utilizing extralinguistic
knowledge stored in the system. The current version of ERL lacks the necessary
Inferential mechanisms which would supply this information. ‘This aircraft ’, therefore, is
interpreted as the description of an object. As mentioned above, ‘precede ’ relates two
events on the time axis. ‘Precede’, then, is a relation which has two arguments: a
‘predecessor ’ and a ‘successor ’. As indicated above, the first argument of ‘precede ’ --
the ‘predecessor ’-- will be an aircraft description. The second argument of ‘preci~’de’--
the ‘successor ’ -- will be the interpretation of the syntactic object of the sentence.
ERL utilizes a normalization rule to transform the latter into a sentential structure which
Is then further interpreted by rules of semantic interpretation, and transformed into an
event record of type ‘deploy’.

A diagrammatic representation of the final output of the event record synthesizer~isgiven in Figure 1, which is read as follows:-
The record is of type ‘precede’. The ‘predecessor ’ describes an object of type ‘aircraft ’,
while the ‘successor ’ describes an event of type ‘deploy’. The objects being deployed
are UAF B-75s, and the destination ot these aircraft is Mauritius.

Precede — 

I M o d i f i e r :  ROUTINELY I A l r c r a f t  I
I Predecessor:  > l E q u lp in e n t :  THIS AIRCRAFT I I

) Object : —~— > I A 1r c r a f t  I I
I I E q u i p m e n t :  B— 7 5 I I
I Successor: > 1 I Se rvic e :  UAF f I

I I I
I Iflestination : TO MAUR ITTUS
I I I I 

I I

1 -- ~~~. 

F igure 1. Content Representation of “THIS AIRCRAFT ROUTINELY
PRECEDES UAF B-75 DEPLOYMENTS TO MAURITIUS” .

3.4.2.1 The Initiation of the Synthesis Process. in this section we give a detailed step
by step description of the event record synthesis process as executed by r’IAT RFS Il.
As explained in a previous section, the ERL semantic interpretation rules (clauses) are
used top-down, one at a time. Goals in a clause are executed from left to riCht. If there
are alternative clauses at any point , backtracking will return to them. To see how parse

1-29

- 
V~ 

-- . -

~~~~~

- -

~~~~~~~



---

trees are Interpreted by FIUV , consider (2) , which is the parse tree of sentence ( 1) . -

(2) s(np(dp(O , T HIS,O),[J, nnode (AIRCR A FT ,O),[ j ),

vg([HOU I INFLYJ, ( j,O,PHE CE OE S) .
np(0,[nnode(UAF,O),nnode( B—I 6,0)),

nnode(t)FPI OYM ENTS ,O),

~~~ 
[pp(~ 1,T0,np(O,E 1,fl, xl (MA UITIUs ,0),[1)) 1),

°~tP.
For simplicity of exposition we will henceforth refer to structure (2) as ‘ 1 moo iii’.

The synthesis process involves the e xecution of the system-generated goal (3);

(3) :— build . FR (‘Ii on in’ ,LH).

‘build FF 1’ Cl aU SeS have two arguments: the input structure ‘Tree~ in ’, which in our ~~asn

Is the structure qiven in (2), and an output structure I R, w hich is the content repros i’n—

tatlon of ‘T r e e_ in ’. . . -

3.4.2 .2 i) c t iva tion of t emplate. Since ‘t ree - in ’ in our example is a sontent ial structure .

goal (3) unifies with the head of I Ii’ f i rst clause of the ‘build _ i- H’ procedure (4):

(4) build _ FR (s(Subj,Vbgr .Obj .COI11PI.VmOdS),F11):—
flnd _. I riame(Vhcjr,Naiiie),
construct(Naiui’ , I roe _ in ’ .1 11). -

This results in the following instantiations:

(5) Subj = np(tlp(O ,l i l I S ,0),[1,I~IiOdO (AlRCF1A 1 1 ,O) ,fl);
Vbgr = vg(~ROUI lNt I Y],(],O.PI1I-CFDI 5),
Obj np(O,[nnodii(UAI ,0), nnodo([3— ~‘i ,O)j ,

— nnode(DFPLOYMINtS ,O),
[P~ (t 1,TO ,np (0j],I1I1OUIO(MA TILIS,0),i]))])

Compl = 0;
Vmnds = [1.

1 he body of the matching clatisi ’ instance (4) also gives rise to the two now subgoals

(6) and (I);

(6) f i n d t nnmo (v g([ROL J I IN I i Y
~ J,0,i’lll Cl fli S),Name).

(i’) construct(Namn ,
s(np(dp(0 .TI 4 I S ,0),[1,nilt le(AIRU HAl I .p).E I).
vg([flOtJflNit Y) .[~.0.PflF CFr)FS),
np(Oj nnode(tlA I ,O) ,i~co li’(lt -

nnodi-’(Di l’I O’YMI Ni 5,0’) .
I pp([~.1 0.np(O ,(I.nnode(MAI 1111 I ltIS ,0),[1))]).

0,1]), } H).

he first task is to ~l& ’nt i fy the template mm ’q~iired for the interpretation of (‘‘I 1 his Is

achieved by t ’~~t’ :uti,1g ~io~ I (t~ lI:.t~’ I above.

Goal (6) matches the bend of the Ii, sI clans” of the ‘find_ t name ’ procodiu r o (500 8). I t

produces the instant iatuens ci ‘) , nod yields tt~~ nOW goal (10) : —

1— •~~()

-
~~~~~~~~~~~~~~~~~~~~~~ VVVV-V _



_ _ _ _ _  _ _

(8) find_ t_name (vgL.,_,_ ,W),Y):-
flnd _ feat(W,L,Y).

(9) W =‘precedes ’ ; V = Name

(10) fInd_ feat (‘precedes’, [list of event template names], Name).

Goal (10) in turn unifies with the head of the ‘find_ feat’ clause (11)

(11) fInd_ feat (W ,L,V ):—
mem (Y ,L),

feat (W ,Y).

This creates the following instantiation (12):-

(12) f ind_ feat (‘precedes ’, [list of event template names], Name):-
mem(Name,[Iist of event template names]),
feat(’precedes ’, Name).

The execution of the subgoals of (12) result in the instantiations (13):-

(13.1) Name = ‘Precede’ ,and
(13.2) construct(’precede’, Tree-in’, ER).

where (1 3.2) Is still only a partial instantiation of (7).

Goal (6) is now fully instantiated, i.e., the name of the template sought was found to be
‘precede’.The system now proceedes to execute second goal set up by executing (3),
namely goal (7), now instantiated to (13.2). Executing this goal results in the instantia-
tion of the two arguments of ‘precede’, namely, El and E2.

3.4.2.3 Instantiating the Arguments of ‘PRECEDE ’ The reader Is reminded that the verb
‘precede’ is a two-place predicate whose interpretation in the environment of a subject
El and an object E2 is ‘before(E1,E2)’. The ‘construct ’ procedure for ‘precede’ seeks to
find fillers for the two arguments El and E2. To achieve this result, goal (13.2) unifIes
with the head of the ‘contsruct ’ clause for ‘precede’ (14), and sets up the two subgoals
(14.1) and (14.2):-

(14) construct (‘precede’, s(Subj ,_,Obj,_,_) , [E1,E2]):-.
(14.1) build_ EFI(Subj,E 1) ,
(14.2) build_ ER(Obj, E2).

where, according to (5),

Subj np (dp(O,THIS,0),(],nnode(AIRCRAFT,O),[]);
Obj np(0,[nnode(UAF ,0),nnode(B-75,0)],

nnode(DEPLOYMENTS,O),
(pp([],TO,np(0 ,[J,nnode(MAURITIUS,0),[]))]).

The next step Is to execute goals (14.1) and (14.2).

3.4.2.4 Interpreting the Syntactic Subject. The partially instantiated goal (14.1) is
shown In (15):-

(15) build_ ER(np(dp(O ,THI S ,O),f ],nnode(A IHCRAFT) ,O),[]),ER).

Since the first argument of (15) is a nounphrase , it will unIfy with the head of the
second ‘build_ ER ’ clause (16):-

1— 31

L — ~~~~~~~~~~~~~~~~~~~~~ - -



(16) build_ ER(np(Oet ,L1 ,N(W . - ),L2), ER) :-
feat(W ,’NOMZ’),
change(np(Oet ,L 1 ,N(W ,_ ),t 2),T 1),
bulld_ ER ( T 1  ,ER).

However, the first goal of clause (16) requires that the headnoun have the feature
‘NOMZ’. This is not the case in our example , so that the first goal fails. The system now
backtracks , i.e., ~t rejects the most recentl y activated clause (16) undoing any substitu-
tions made by the match with the head of the clause. Next , it reconsiders the original
goal (15) which activated the rejected clause , and trIes to find a subsequent clause
which also matches the goal. As a result , goal (15) now unifies with the head of the
third ‘build_ f-H ’ clause (17):-

(1 7) build_ ER(np([)et ,L 1 ,Noun ,L2),ER):-
(1 7.1) find t - - name(Noun,Name),
(1 / .2) construct(Namn ,np(Det ,L 1 ,Noun,L2) , ER).

This results in the fo llowing instantiations:—

(18) Det = dp(O,THI S ,0);
Li = [] ;

Noun = nnod e (AI RCRAFT ,0);

E1 ER.
The first goal of (17) unifies with (10):-

(19) fin t name(niiode(W ,O),Y):-
f Ind .... feat(W ,[’aircraft ’, ‘DTG ’, etc j, Y).

The procedure here is similar to that described eariler. As a result of the unification pro-
cess, and of executing (1 0), we have the following instantiation:-

W = ‘AIRCRAFT’
V Name = ‘aircraft ’.

Clause (17.1) Is now fully Instantiated -- the template sought has been found to be the
‘aircraft ’ template. The system proceedes to the execution of goal (i 7.2).
Goal (1 1.2) Is now partiall y ‘u;stnntiated to (20):-

(20) construct(’a ir cr a f t ’, np(0 ,THI S ,0),[1,
nnode(AIR CRAF I ,0),[}),ER).

Goal (20) activates the ‘construct ’ procedure for ‘aircraft ’, which fills the ‘equIpment’
slot with ‘this aircraft ’, and le,n,es all other slots empty. The result of executIng (20)
is: -

I &1 t L t ’~ t’ t
El = I e q ; i l p m e n t =  THl ~ A I E Z C R \ F T  I

— - +

-- 3.’

_,~~~~~~~~~~~~~~~ - , wrr r :; . tI.~~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



3.4.2.5 Interpreting the Syntactic Object. Rather than describing the process of syn-
thesIzing a record for ‘this aircraft ’ in detail, we will return to the second goal of the
‘construct’ clause for ‘precede ’, namely, to (14.2), which is now partly instantiated to
(21):-

(21) bulld_ ER(np(0,[nnode(IJAF,O), nnode(B-75,0)J,
nnode(DEPL.OYMENTS,0),
[pp([],TO,np(0,[ ],nnode(MAUR1T$US,O),[]))]),ER).

The first argument of this clause Is the nominalized sentence ‘UAF 8-75 DEPLOYMENTS
TO MAURITIUS’ .AccordlngIy , clause (21) will unIfy with the head of the second ‘build_ ER’
clause, namely (16) , reproduced here as (22) In Its partly instantiated form, complete
with Its subgoals (22.1), (22.2), and (22.3):-

(22) bulld_ EFl(np(O ,[nnode(UAF,O),nnode(B-75,O)],
flnode(DEPLOYMENTS,O),
[pp([],T0,np (O ,[),nnode(MAURITIUS,O),[]))J),ER):-

(22.1) feat(DEPLOYMENTS, ‘NOMZ’),
(22.2) change(np(O,[nnode(UAF ,o),nnode(B- 75,0)],

nnode(DEPLOYMENTS,O),
(pP([),TO,np(0,[],nnode(MAURITI(J5,O),[)))]),T 1) ,

(22.3) build_ ER(T1 ,ER).
Goal (22.1) succeeds, and the system activates the ‘change’ procedure. Goal (22.2)
unifies wIth (23) below, which restructures the Input nounphrase Into a sentential
structure: -

(23) change(np(Det ,[L 1 ,X],nnode(W ,O),L2),
s(np(Det,Li ,nnode(X,0),[],),vg(_ ,_ ,O,W),O,0,12)).

Upon unification wIth (22.2), (23) becomes Instantiated to (24):
(24) change(np(0,[nnode(uAF,o),nnode(B_ 75,o)],

nnode(OEPLOYMENTS,O),
(pP([],TO,np(0,[],nnode(MAURITItJS,O),[]))])

a(np(0,[nnode(UAF,0)J,
nnode(B- 75,O),[]),
vg([J,[],O,OEPLOYMUNr s) ,
0,
0,
[PP([],TO,np(0,[],nnode(MAuRITIIJS,O),[]))])).

Ti is Instantiated to the second argument of (24). The system now proceedes to exe-
cute poe1 (22.3) reproduced here In its Instantiated form (25):-

(25) buit&_ ER(s(np(O ,tnnode(LJAF,o)],
nnode(B- 75,O),[J,
vg([],[ 1,O,OEPLOYMEN1 S),
0,0,
[pp([ ],TO,np(O,[ ],nnode(MAIJRIT IUS,O),[]))]),ER).

Execution of the ‘built_ ER’ goal (25) eventually results In the actIvation of the ‘con-
struct ’ clause for ‘deploy’ (26):-

1-- .13

- ~~~~~~~~~~~~
—_ _--- _~~~~~~~ -- _ .

—---- - 
- -



(26) construct( ’deploy ’ ,IT, [01 ,D I ,T2]):-
objecti (IT, 01),
destinationi (IT , 01),
t ime2 (IT , 12).

with ‘IT’ instantiated to the first argument of (25). The goal ‘object 1’ activates the
‘objecti’ procedure (28):-

(28) objecti (s(Subj,_ ,_ ,_,_ ), Slot):-
test_ nhead(Subj, ‘acraf t ’),
construct ‘aircraft ’, Subj, Slot).

The result Is the instantiation:-

SubJ = np(O,[nnode(UAF ,O)],nnode(8-75,O),[]).

and ‘Slot ’ gets linked to ‘01’.
The goal ‘test_ nhead ’ determines whether the headnoun(W) of a noun phrase ‘np ’ has - I
the feature Feature. It unifies with the clause for ‘test_ nhead’ (30), and results In the
Instantlations (31):-

(30) tesLnhead (np (_ ,_ ,nnode(W ,_)) ,Feature
(31) W= ‘8-75’; Feature = ‘acraft ’

Goal (30) succeeds, and the system begins executing the second goal of (28) namely
(33):-

(33) construct (‘a;rcraft ’, Subj,ER).

The second goal of (26) activates the ‘destination’ procedure (35) and returns Dl = ‘To
Mauritius’

(35) destination (s(_ , , ,_,Vmods), Slot):-
fill_ slot(Vmods , [‘nil’, ‘to’ J, ‘ b c ’, Slot).

The third goal of (28) activates the ‘t ime2 ’ procedure (37), whIch returns 12 = ‘nil ’.

(37) time2 (s(_ , . , ,Vmods), Slot):-
f i l l _ slot( Vmods , [‘at ’, ‘between’, ‘by’, ‘during ’],
‘tyme’, Slot).

t ime2 (s(_ . , ,  ,Vmods), Slot):-
fill_ slot(Vmods , ‘tyme ’, Slot).

tIme? C~.. ,niI).

This completes the execution of goal (26). As a result , the second output element (E2)
of the ‘construct ’ procedure for ‘precede’ Is instantIated to an event record of type
‘deploy ’, I.e.,

1— 34 

— -~~--~~~ ,-—.- - 



- -_ _

C’,
-Th

5

• 1— ~ 1 

- - -- - -- --- ;-—- - - - - - - - - -~~ - - -



4’

ci’
0ci,

4~)

. 1
0

~~~~~~~~~~~~~~~~~ \
... — I ~ Ic t ~ IC.,1

1-61

~

- - - - - - - -

—- 3--- -. -
~~~~

4

ci,
‘N,
ci.
ci. S

ci.

0

3 
-
~~~~~~~~~~~~~~~~- -~~~~~~ - ~~~~~~~~~~- -- - -


_
-

~~Z 3

- _ _ _

_ A~~~~~~~~~~ LX~~, , r-rrr)r -

N.

‘N 4-,

ci)

ci. (0

ci)
>

7 0 ~\
~ I0

f ~~ I
N. ci)

‘s_ I ci)
5-

ci. l
‘-I I
Li i

5-.

N.

1-64

— -~‘Th :‘~~~T~r ‘~~~~~~~~~~~~ ‘ . -
~

-
~~~~~-~~c’~’ ~~~~~~~ ‘~~~~~~~-~~

- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— ~~~~~~~~~~~~~~ • —

I -1
ci.

I N. I

4-)
ci)

I ci)
I “I

N . l
(0

ci)
.-.

ci,~~ 4-)

ci)

‘
—

-3,...
’f~~ \ V

I ~ I C)
( N .  I U

I

\~~~~~ I
C)

N.
ci;

-- ----- - ..:: - - —~~~~~~~
--
-

~~



I

1— ~~

_______________________________________ ~~~~~~~~~ — - -



— -  
~~~~~~~~~~~~~~~~~~ r: - a- - - 

~~~~~~~~~~~ .~

3.

3’I N I
t 3.

~~~~~~~
3’

(

~~~~~~~~~~~~ i N  4-

I
ci)

£ I~~ -~3. 
‘3. I 

03

3. 7
)

.1

3’
N 0
3’3, 

4-)

(/1
— 0
3,
“4 3.

3. 5-.
- -. 03

ci)

1— t -
~ ,

‘

L - ~~~~~~~~~~~~~~~~~~ 



-~

3.
3.
3.

3.

L. 

1— ~~ 

- - ——



~~~~~~~~~~~~~~~ ‘ “~~~~~~ ‘~~ “~~‘ . - - •  - ____________________ ___________

3 . 1
’

1- t 1
~

L.
-

- - ~~~~~~~~~~~~~~~~~~~~
— -- -‘

~~~~~~~~~~ T3”,’r~-~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ .# -

-. ci).~

4-,

C)

-‘N 4.-

I t  C)
I-

ci-

70



-- . 3 - - -- . - ,

-

~~

3.

c~”C~ 
-

- N

H

- ~~~ 
.

~~~~~~
•, I

:- - ~~~ ~~ - /

~

/

-——~~~ —-~~~~~~~~~~~~~ ~~~ F-- - — ,-.,. —3- - —~ 3 __
~~~~~~__1_ ___ — - - - - —“—3



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- - -  - — ‘ — — -  - -

4.5 Template Descriptor Selection: Methodological Issues
ThIs section provides a general discussion of some fundamental Issues pertcining to the
selectIon of descriptors for templates relating to any subject domain in general , and
lists the descriptor system developed so far for the domain of airc raft activities in p ir-
ticular.

4.5. 1 User-Related Considerations

The set of properties used for the description of events relat ing to a particular subject
domain must answer the what , who, where , when , arid why iriforniation questions
relevant  to the  analys t ’s task. The def inition of the descriptors and their organization,
therefore , must be consonant with the analyst ’s view of the world.
In general, any number of propertIes may be specIfied for any gIven class of entities.
However , not all propertIes have the same degree of usefulness in a given context. The
properties selected for inclusion in a template must , therefore , be sensitive to the ti sk
the template Is designed to support. Ac cordingly, the first criterion for selection is that
of relevance. Templates must include only that information which is particularly relevant

• and useful to the task at hand, and not the full range of facts one might find in an ency-
clopedia.

4.5.2 Linguist ic Cons iderations.

In this subsection the discussion wilt evolve around the linguistic criteria for descriptor
selection.

Broadly speaking, descriptors fall into two major categories those that involve “deep
case ” re la t ions , and those that iiivoI~ e inferences of a special kind. “Deep cases ” are
binary relations which Specif y an event regardless of the surface realization of that
event description as a senten~~ or a noun phrase. The descriptors involving inferences
are restricted to those which have to do with the relations of entailment and presupposi-
tion.

Descriptors selected for inclusion in templates within a particular subject domain are
pragmatIcally determined from a linguistic and logical analysis of a representative sample
of Intelligence messages. The criterion used for selection of “deep case ” re la t ions  is
the following:

A deep case is a relation whose value is usually
specified for a given event type.

Thus, flight reports include a description of the object(s) which is (are) doing the flying
and frequen ly mention other relations such as the source of the flight, its direction, the
area overflown , the destination, and the mission. These properties are assigned t he’

— status of “deep cases ” in the sense specified above.

Pilots, how ever , or navigators , are very seldom mentioned in flight reports. They will Pe
treated d i f fe r ent ly, namely, they wIll be regarded as presupposition of the flight event.
The notions of entailment arid presupposition are explicated in a later st ibsection. The
next section discusses the notion of “deep cases ”, which is the basIs for defining intra-

- 
1 template relations.

3 

4.5.2. 1 The ‘Deep Case ” System.

A “deep case ” is a binary relatIon wlrL~h holds bet ween a predicate (usuaI~y, but not
necessarily, realized as a verb) arid one of its arguments. Deep cases are used both in

L ‘~~~~~~ 
-33 -~~



3’ ‘3”

accounting for the relative acceptability of natural language sentences arid in xplaiiiinçj
how si-i Intelligent system might understand language. This is done lii terms el a “ c is e
structure ” and “selectional restrk tions”. The case structure for any pre!dicat~ is the’
set of cases allowed in a description of that predicate. Select ional restr ictios- i ; then
place semantIc constraints on the objects which fill the case slots.

Each predicate has a number of cases. These may include adverbial modifiers , temporal
Indicators, and other propositions as well as the usual nominal cases. For example , t he
case structure for the predicate “be enroute” might be (Object , Oestination), where
each case may appear at most once. Object represents the notion “The thi’iq ~-hich i~en route”. The meaning of Destination is clear. Both the Object and the Destination must
be present in the message text;  i.e., they are obligatory cases which are reqi’irt ’d b r
the event description to make sense.

Other predicates may have allowable cases which need not necessarily be reali:’ed in
the text. Such a predicate is “fly ”, for which only the “thing which is doing the flying” is
obligatory. Ifie other allowed deep cases , such as Source , Dest ination , Fx t en t , Dircc-
tion, Area , Mission, etc., are optional, i.e ., they may or may not appear in the actual text.
Any of the following sentences satisfies the descriptor structure for the fly tem plate.

The aircraft flew south.
The aircraft flew to Mombasa.
The aircraft f lew Irons London to Cairo.
The aircraft flew as far south as Cairo.
The aircraft flew a reconnaissance niission over Uganda between
0012 and 0036 on 26 Feb 1975.

However , if the f irst and last sentences refer to a sIngle aircraft , based on oi:e. eness,I~,ci
or more than one, the additional Information provides material to complete the empty
descrIptor slots in the ‘f l i gh t ’ template representing that event. Selectional restrictions
vary from global constraints on the use of a case (e.g., “every agent must be animute ”)
to local constraints on the use of a case wIth a particular predicate (e.g., “the destina-
tion of a flight must be a geographic location such as a country, a city, or an airport”).
The degree to which a case-based theory ca n account for the correct interpret~itior of
text depends upon the way the cases medIate between surface forms and corrcepti i, i I
structures. The transformation of surface f orms into meaning represcntatM:ls i~ t i s ’

• funct ion of the procedural component of templates , wh ch was described in S~ b-in

4.5.2.2 Pr€supposl tion and Entailment.

Presuppositioo and entailment are a subclass of inferences which appear to be closely
connected with the structure of language. They arise from two main structural sources :
one, the semantics of partIcular words , and two ,from the syntactic (or re lat ional) s t ruc—
ture of sentences.

- - 4.5.2.?. 1 E ntailment. A proposition P entails a proposition P’ if and only if in every con-
text in which P is true , P’ is also true. For example , a plane cannot fly ur:k’ss it Ii

taken of t , cannot land uiile’s:, it has been flying, must be in flight it it has t , t i ,i’il oil a’ -d
has not landed or been destroyed. Thus a tak e— of f  event entails a sut’s ’q~ient fI’qht ,
while a flying event entails a precedin ) take—ot t .  A lancl irip eve’it enta ils - ‘

flight , while a flying event entails a subsequent landing.

The above entailment relations are obligatory and spe:~ific to t he :espec~ice c v - s t
predicate , i.e. , a flight entails a previous take—off  because of the meaning ot “fly , wl’ In



— -3— - - —-3—--—— . --3. —r~
---1. ~~~~~~~~~ 

—

a landing entaIls a previous flight because of the meanIn g of “land” .

Such entailments predict the normal , expected, orderIng of events li-i the air activities
world. Any violation of these expectations can serve as a warnIng to the analyst that
some external le i c e  has altered the predicted course of events.

For example, If a plane which is reported In flight does not land within expected limits of
time , It may have altered course , may nave made a forc~~landing , or may have been des-
troyed. It Is Important that the analyst be alerted to any deviatIon from the expected.

4.5.2.2.2 Presupposition. A second, related concept is the notion of presupposItion. A
proposition P (logically) presupposes a proposition P’ if and only if P entails a P’ and —P
en tails P ’. Therefore , whether P Is true or false , P’ must be true If P is to make any
sense at all. It is clear from the above definition that all logical presuppositions P’ are
also entailnients of P. Presuppositions play an important part irs the meaning of many
words.

For example , in the air act iv i t ies domain, a flying event presupposes that the thin g which
does the flying is an aircraft. [ho presupposition is related to selectional restrictions
and Is incorporated In the specification of what may fill the Object slot of the FLY event.

Certain aspectuals (e ~ bo~ i nr , continue , end) are also associated with presuppositions.
For example , both the se iit e! i 1ce~ “the plane continued flying” and its negation ”the plane
did s,ot continue fl~~ iiiq p1 e .supposc that at some point the plane was flying.

The predicate ‘ i ~‘ t e r r i i ’ presupposes that the object which is reported to have returned
has been at that location before.

One of the important aspects of presupposition in ianguage is that it informs the reader
that the presupposition must be considered true. Thus , if some aircraft is reported to
have returned to its normal operating area , it must  be consIdered true tha t  some tinse
before its return it took off from that particular area. Even if the report were neg a t ive ,
I.e., stating that the aircraft iii question had riot returned to its normal operating area ,
the presupposition tha t  it had previously takers oft from that area remains true.

Thus , presuppositions and ensta llments add information which is conceptually associated
with some ent ity, b u t  is ve ry  seldom ment ioned  explicitly.

This fact can be ’ of assistance to the analyst in establishing the identity of objects
involved II • irIs i eported by d~t Icr ,  c i t SOUroCS is different ways , or p~~rIi~~pi-~ iii s~’o ’,~ins g
to establish links between e ’v e ’ ints which otherwise might appear unconnected.

The descriptor system for the air activities sublanguage then, Includes , in addition to
those disci isseid pre1vioilsl y, the two descriptors related to inferences , namely, entail—
ments and presupposition s.

4.5.3 Ttst ~ 1) t ’ .s r : r i i ~tor S~- .st ,’, ’i fo r the 12ircr ~ f t Domain table 4— 24 shows the descriptor
System so fa r iJ~ ve I~ pod I ‘i the air ac t i v i t i es  sublariguage.

I ,‘4

- - - .~~~ ~~ ..- - 1



-~~~~~~~~ =~~
—--~

—,-—“— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..—

~
—.--——--- —  - —. -

Table 4-24. Air Activities Descriptor System
+ +

I A .  Motion r e l a t ed  d e s c r i p t o r s  I
I Agent An ima te  i n s t i g a t o r  of the  a c t i o n .
I Object The e n t i t y  that  moves or C 1I -I O �~CS o r  I
I whose p o s i t i o n  or ex i s t ence  Is be ing

descr ibed. I
I Source The loca tion of the object at the I
I beginning of a motion. I
I D e s t i n a t i o n  P r o j e c t e d  or actual  d e s t i n a t i o n  I
I of the object  at the end of the I
I mo t ion .  I
I D i r ec t i on  D i r e c t i o n  of m o t i o n  of object at time l
I of o b s e r v a t i o n .
I Path Path or area t raversed  during motion. I
I E x t e n t  E x t e n t  of m o t i o n .  I
I Limit Limit of motion. I
I Altitude Altitude of object at time of I
I observation,
I Region General location of the action.
I Status Begin , cont inue , end. I
I Time specification Time of observation or duration of I

the event.  I
lB.  Event re la ted  d e s c r i p t o r s  1
I Mission Purpose of flight. I
IC .  A i r c r a f t  r e l a t ed  d e s c r i p t o r s :
I Equipment
I Class I
I NATO designation I
I N a t i o n a l i t y  I
I S u b o r d i n a t i o n  I

Flomebase I
I Staging base I
I Set s p e c i f i c a t i o n  I
I C o n f i g u r a t i o n  I
ID. In f e r ences  I
I E n t a i l n s e n t s
I P r e s u p p o s i t i o n  I
I The l a t t e r  i n c l u d e  ob jec t s  normal l y assoc i a ted w it h some
I concepts bu t  very seldom mentioned , (e.g. , pilot , fu se l a~ e .  I
+ - -- - +

1—i F ;



- - — —
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - — - -

5.0 Referen ces

Colmerauer , A. Las Grammaires de Metan.orphose. Groupe d’lntelllgenco Artificielle ,
Marseille , Marseille-Luminy, Nov. 1975.

DahI,V. Un Systeme Deduct/f d’lnterrogation de Ban ques de l)onnaes en Esp agrol .
Groupe d’lntelligence Art if icielie, Universite de Marseilles-Luiisinny, Nov ,iY/i .

Gimpol , J. Algorithms in SNOBOL4 , W iley & Sons , N.Y., 1 976.

Kowalski , R.A. Logic for Problem Solving. DCL Memo 75, Dept of Al , E dinburgh, March ,
1974.

Kuhns , J.L. and C.A. Montgomery, Synthesis of Inference Techniques , Event Record
Specification System Concept: Preliminary Notions, OSI T i .e~Ii(1Ic8l Report No. 1 ,
A 73-008 (Contract No. F30602-73-C-0333), Operating Systems , Inc., 1 7 October
1973.

Kuhns, J.L., Synf has s of Inference Techniques: An Interpreted Syntax f or the Logical
• Description of Events , OSI lechnical Note No. 2 , N74-003 (Contract No. F30602-

73-C-0333), Operating Systems, Inc., 31 May 1974.

Kuhnis , J.L., C.A . Montgomery and D.K. We lche l, ERGO -- ~r1 System for Event Record
Generation and Organization , RAD’ -TR-75-51 , March 1975.

Morr ison, Donald A. PATRICI4 - Practical Algorithm to Retrieve information in
Alphanumeric , Journal of the ACM , Vol. 1 5, No. 4, 1 968.

Pereira, L. M., F.C.N. Pereira and David H.D. Warren. User ’s Guide to DECsyst em- 1O
Prolog. Provisional VersIon, April , 1978.

Reichenbach, H. Elements of Symbolic Log/c , Macmillan Co., N.Y., 1947.

Robinson, J.A. A Mach/ne-Oriented Logic Based on the Resolution Principle. Journal
of the ACM, 12, 196 5.

Roussel, P. Prolog: Manuel de Reference et d’Utilisation. Groupe d’ lntelligence Artif I-
clelle, Marseille-Luminy , 1975.
Russe ll, B. On Order in Time , reprinted In Logic and Know/age (A . C. Marsh, ed),
George Allen and tinwin, London, 1956.

Sllva , G. and C.A. Montgomery, Automated l&W File Generation , RADC-TR -7?-194 ,
June 1077.

Sliva , G. and C.A. Montgomery, Knowledge Representation for Automated Understand-
-; Ing of Natural Language Discourse. Computers and the Humanities , Vol 11, Pergamon

Press , 1978.

van Emden, M I-I. Programming with Resolution Logic. Report CS-7 5-30, Dept. of
Computer Science , University of Waterloo , Canada , Nov. 1975.

Warren 0. H. 0. Implementing Prolog- Compiling Predicate Logic Programs. Dept. of
Al Research Reports 39 & 40, Fdinburgh, May, IS i’ 7(a).

Warren D.H.D. Log ic Programming and Complier Writing. Dept. of Al Research Report
44, EdInburgh, September , 1911(h)

1 — ‘6

-- .-- . -~~~~~~~-~~~~~-

- -___ - -- - - -

Warren , D.H.D., Pereira , L .M. and I ereira , F.C.N. Prolog- Ih.’ Language and its ln rp !e-
mentation Compa,ed wi th Lisp. Pr.,c~

;. of the ACM Symposium on Al and rr qr~ ;,~~.nq —

Language’s , SIGPLA N/SIGART Newslr~ttur , Rochester NY , A u y 1977.

Weiner , N. A Conu~bution to the Theory of Relative Posit ion , Proc. Camb. ~‘i l. Sue. ,
vol 17 ,1914.

Woods , W.k Pr ocedural Semantics for a Q~iestion Answering •~-~,i~-h nc MiPS ~~ nfc ~-
once Proceedings , Vol. 33 , 1968.

Woods , W A . P ugress in Na tuia/ Languaga Understaading: ~ tr ~ / - . ‘~~ d’ -~~ ’r ~O ~~~t.-.:

Geology. AFIPS Conference Proceedings , Vo l. 42 , National Computer C~ r rf ’ rcn~~’,
1973.

Woods , W A . l r c i ns/ t i o n Net work Grammars for Natural Languge ~~~~~~~~ C m i ut~n~c~~--

tioiis of the ACM , October , 1 t)70.

Woods , W A . What ’s in a l ink: Foundation s for Semantic Netw orks . in P~ ni~ I C

Bobrow m d AHan ~lliirs (eds) r r c ~~ P t, i ~ ~~~~; and Urdors tdnt ! !n 3, N -.~ ‘yo r ~~, ,\-_ -~~ :L’n~h:

Press , 1975.

1 — 7 7

1.0 Introduction

This section describes the implementation of the concepts of the f irst section , in the
form of the MATAL S II system. The following subsections describe the various com-
ponents of the system. In some places , references are made to MATAL S I, tl ie -’ productof the contract directly preceding the current one. The reader is referred to the finalreport of that contract for details.
Subsection 2 presents the data structures and algorithms for the sentence Input and
grammar processing vocabulary; this vocabulary is essentially an extensive modificationof the MA IRES I system. Subsection 3 describes the capabilities added in the area of
morphology. The implementation of the [AL evaluation process , including the abstract
machine which is the target language of ERL , is described in Subsection 4. The ERL
compiler , which is the only non-Forth module , is discussed in Subsection 5. The last
three subsections are intended as a guide to the Forth program files listed in AppendixA, and provide glossaries of the Words in those files.

—- — -~~~ ——-

-_---_____ -, - & ~~ :
-:-——-—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~--c ,aS ~w y~ ~~~ ‘ ‘ “ ~‘ ‘~~~“ ~—-~r

2.0 Design of Lexical and ATN Processors

2.1 General Principles

All operations involving addresses use a set of Words which expect addresses, even 4 f

the operations are simple; e.g. to increment an address p’ by ‘ n ’ words (bytes), ust’ p
n a+” (“p n \a+”), where “~~+“ and “\a+ ” are defined as:

:a+ 2* + ; : \ a + + ;

Note that these words are riot commutative , and expect the address on 20S.

Of course, any FORTH Word may be used as an action, but it should be re membered that
actions may have to be undone; therefore , action Words should not modif y storage out-
side of the context blocks.

For the purposes of defining structure , w e assume that structures will only be built and
examined, not modified or deleted; all dynamic storage will be released w he’ im a sentence
has been completely processed. Later enhancements may require a dynamic space rec-
lamatIon mechanism , but we don’t make any provision for that now.

2.2 Data Structures

All the following structures reside in block storage to provide for uniformity of address-
ing, since we use a 16-bit addre ..; for block storage similar to the one used in I&W II for
data base pointers; these pointers cannot be distinguished from core addresses by their
content alone.

The lexical unit , as defined below, is different from that of I&W 11; he re we treat dii’-
ferent senses of words having multiple senses as distinct lex ical units , arid use for ward ,
backward and alternate pointers to link units within the sentence , tnus cr eating a “t wo-
dimensIonal” list of lexical units for the sentence.

A lexical unit has a string pointer, a string length, a forward pointer (to the next unit in
the sentence) , a backward pointer (to the previous unit), an alternate pointer (to
the next sense unit for the current word or phrase), and a sense.

A register is empty or contains a pointer to a lexical unit or a list or a node .

A node has a label and one or more branches; a branch is en-pty or points to a lexical
unit or a list or a node; a label Is the name of a Word which contains a branch
count and the label name (in the format of an ERL functor literal; see t h e  section
on ERL).

A list has a zero branch count and a link to the first listel; a listel has a pointer to a lex-
ical unit or a list or a node , and a link; a link points to a listeI or is zero.

2.3 Action Definitions

The actions for l&W Ill are totally differ ent from the previous ones; for convenience , we

will repeat the syntax definitions from MATRES here , with new rules for declarations and
actions (note that “W’ represents a blank that must be present).

grammar ~:= ‘GRAMMAR W start-state-name declaration* state+ ‘~SFNDGRAM MAR’

start-state-name :: state-name

declaration ::= ‘~REGISTER~’ register-name I ‘V ~LlS TY” list-name number ‘~ LABEL~ ’
label-name

‘1 ~~
- - C- 



____

register-name, list-name , label-name :: Word

state ‘:SW state- name arc+ ‘h;;’

state-name Word

arc :: ‘:WRD~ ’ “W string “ tail

‘:MEMW ‘(W (. “W string “ )+ ‘b)’ tail

‘:CAT W [ ‘ - ‘ 1 1$’ feature + ‘
~

j ’ tail

‘:TS [W condition ‘~~~ ‘W action* ‘~S~>PS’ state-name ‘$,,W

‘ :PSH~ ’ ~ condition ‘$~‘kS’ ] actio rm* ‘~ TOW state-name action* ‘
~~ - ) W  state-name

~~~~~~~~~ I
‘:POP$’ [condition ‘

~~~
“

~~
,‘ ] action* ptr ‘

~~
, Y ’  )

‘:JUMPW state-name [ condition ‘$~~~
‘ ] action* I ‘~ A DVW I ‘~ RETW J ‘

~~ ,.W

tail ::~~ ~ condition } ‘
~~ !!W a~~tion* ‘

~~ => W  state-name ‘~ ,,W

condition ::~~ condition condition C ‘~ ANDW ~ ORW ) J condition ‘~ NOTW cond

cond ::= pos test Word 
.

test ::~~ [ ~
— ‘ ] ~“W s t r i n g  “ ‘ - ‘ ] ‘

~~W feature+ ‘~J’ $ ‘~ ftOS]W

action ::~~ Word ) ptr register-name ‘V S ET f ~$’ I register-name ‘~ GETR W ptr list-name
-t ‘V ,A DDLISlW ptr reqister-nani e ‘~ SI1NDR~ ’ register-name ‘kSRETRW list-name (

‘~ SENDL$ ‘~ RET LW )

ptr ::= pos J register-name ‘~ GETRY ,’ list-n ame ptr+ label-name ‘~ NODEW

pos :: ‘k~*W ! ‘$*÷ lW ! ‘Y~*- 1W register-name ‘~GETR~ ’

A “ptr ” construction returns to the stack a pointer to a lexical unit , a list , or a node; in
the latter case , the node is actually created by the Word NODE from the label and “p t r ”s
on the stack.  The label preceding NODE must have been declared by a LABII. declara-
tion w hich gives the number of pointers to take from the stack’ ; for example , the
declaration “4 ( ARF I rHIN~~”, together with the action ‘REG @ *+1 *-1 liST THING NODE”
creates a node label led THING with four branches , the first pointing to the list LIST , thc
second to the previous lexical unit , the third to the next lexical unit , and the fourth to
what REG points to . A pointer to the list is returned to the stack. Note that the order of
pointers in the no te is the reverse of the order in which they appear in the tex t .

ADDI.IST adds a ptr to the front of the specified list; thus , as with nodes , the elements
of the list will be in reverse order from that which they were added.

SETR is used to set a register to a value , and GETR is used to retrieve the value of a
register. G ET H may be used in tests , w ith  reg is ters  which point to lexic~il units

SENQA and Si NDt are used only in the preactions of a PUSH node. SENOR sends a value
to a register at flu’ level of the suboet (r e~iist~.’r s ae~i lists arc normally empty on e n t r y
to a subnet). S i mi l a r l y , SENDI sends the current value of a list to the suheet level

RETR and REIL are used only in t i re postact inirs of a PUSH node, and are compiementar~
to SENDIT arid .SF N OL . in that th~’y re t r i ev e  re’ j ’s t e n  and list values , respecti vely, from th e ’
subnet values at the time of the PC~i~.



- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—— -~~~~~~r’~~~w .~: ~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-. -

A POP arc must have a “pt r ” as its last (or only) action, whic h will cause the “pt r ” to be
assigned to * at the next level up.

2.4 Internal Structure and Algorithm Specifications

2.4. 1 Layout of Block Storage All the system structures except the compi ud ATN tes:du
In block storage to provide for uniformity of addressing, since we use a 16-hit a’ldross
for block storage similar to the one used in l&W II for data base pointers; these pointers
ca nnot be distinguished from core addresses by their content alone.

The first structure in block storage is the lexicon, starting at the block speci f ic~d by the
constant SLEX. The variable ELEX holds a pointer to the last byte of the lexicon. Next ,
starting on the next block boundary, will be the text of each input sentence , followed by
the chart for that sentence , and then the stack of state frames. The base block number
for all pointers except within the lexicon will be contained in the constant SBASE.

2.4.2 Structure of the Input Sentence As described below , each input sentence will be
read and stored in FORTH block storage in two parts: the actual character string
comprising the sentence , and a structure of entries corresponding to the lex ical units
(words or phrases) found in the sentence. Each such entry has the following structure:

item

Length
Address of cha’ -. cter string for unit 1 word
Length of character string (in bytes) 1 word
Pointer to next unit 1 word
Pointer to previous unit 1 word
Pointer to alternate unit 1 word
Feature ‘vector NWRD words

At the end of the list of entries Is a “pseudo- entry” consist ing of all zero entries except
for the previous unit pointer , to mark the end of the sentence.

This structure allow s for a list of alternate senses for a given word in the sentence, and
also for handling phrases. For example , it may or may not be appropriate to treat a given
sequence of words as a single lexical unit at a particular place in a sentence; with this
structure, w e could build, as alternates, both the lexical unit corresponding to the
phrase interpretation and the list of units corresponding to the string of words (although
we don’t do that in this system). We will call the structure built for a sentence the chart
of the sentence.

The following varIables are set to provide access to these structures:

TXTP points to the first character of the sentence text.

SENTP points to the first lexical unit of the sentence chart , and also mdrks the end of
the sentence text.

FRAMSTRT points to the base of the first state frame for the sentence , and also marks
the end of the chart for the sentence.

2.4.3 Text Input and Sentence Construction Text input is performed by the Word
GETTXT and its auxIliary Words. The FORTH Word WORD is used to get the next string
of nonblank characters , and CHKWRD strips of f trailing commas and periods , ~i’ii returns
an Indication If the punctuation was a per iod; this is used to terminate the sentence
text. Words will be separated by one blank , and a period set of f by blanks will be

~

F~~~~~ . J . rT .~irII -~~~~
-
. - —.— - -.~~~~~~~ -—- — —~~~~ - -— —-~~~~—

-. - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~—z----:
-

~~~~~~~~~~~~~~~~~ 
-.-— 

~ ‘~
— ‘ -. —‘

~~~~~~~~~
—

~~~~~~
-—- -

~
--— -

~~~~
-- ______

appended to the text (by TEXFIN).

MAKESENT makes the chart of the sentence, creating a lexical unit for each sense of
each word or phrase found in the lexicon, and linking them as appropriate. its operation
Is discussed in more detail in the next section.

2.4.4 ATN Processor - Data and Program Structures The ATN compiler produces a Word
In the dictionary for each state , having code structures for each arc; these are
described below. By “code” is meant a COLON-style sequence of Words implementing a
particular operation. Optional elements of a structure are delimited by square brackets -

-
. All states are encompassed in a scope block named “GRMDF” .

2.4.4.1 State Structure

State entry code
Arc structures for arcs of state
End-of-state code

2.4.4.2 Arc Structures (by arc type)
WRD, MEM, Arc entry code
CAT, TST Code for tests - leaves 1 or 2 truth values on stack

Code for ’!
[Code for actions]
Code for) and state name

PUSH Arc entry code
[Code for tests
Code for !!]
(Code for preactions3
Code for TO and state name
[Code for postactions]
Code for =) and state name

POP Arc entry code
[Code for tests
Code for !J]
[Code for actions]
Code for returning to calling arc

JUMP Arc entry code - 3rd and 4th words are skip around state
name

[Code for tests
Code for I!]
[Code for actions]
[Code for ADV or RET]
Code for jumping to state

In all arc types, the first two words of the ”arc entry code” compr ise a word pointing to
the next arc (or to the end-of-state code), then the FORTH-style code word (a pointer
to COLON).

2- 5

_
~~~~~~~

_
~~

__
~
4__

~~ ~~~~~~~~~~~ 
- 

—~~~ ‘ ~~~~~~~~~~~~

2.4.5 Operation of the ATN Processor The oper~ition of the ATN executive processor fo r
state-to-state transitions would be almost trivial were it not for the fac t  t Lat . for natural
language processing, the ATN must be considered n - .h’terirr nist re, For exam ple , it is
possible to have two arcs leaving a given state with the same tr~;ts but duf L’ re lt  desti -
nation states. As a result , it must be possible to backtrack along a path to a previous
state, undoing any act ions along the way.

In MATRES , this is implemented as follows: when an arc is successfully t aversed , the
Current computation context is pushed onto the dictionary , and a new context esta-
bu shed. Thus the stack of contexts describes the currently aet ive pith tiii’oi gli the
ATN. When the last arc in a s ta te is tried unsuccessfull y ,  b~icktracking is done by simply
popping the stack and restoring the previous context , which includes a specif ication of
the next arc to try in the (once again) current state.

The context referred to above , which will subsequently be referred to as a state frame
to avoid confusion with the linguistic sense of “context” , comprises a base pointer
(FRAMBASE) and a set of value cells associated with various item names. Each name is
defined as an offset from ti re base pointer by the ITEM defining Word. The dictiondry
pointer is kept pointing just past the current frame , and the base pointer is pointing to a
“hidden ’ cell containing the previous ba se pointer; thus a new state frame may be
defined by simp ly moving the base pointer to agree with the dictionary pointer and set-
ting the dictionary pointer abo.~e the ite m with the highest offset , and an old frame

- 
- restored by setting the dictionary pointer to the base pointer and restoring the base

pointer from the cell it points to. This scheme allows the dynamic addition of data to the
current frame by simply advancing the dictionary pointer.

The following data items are present in each stack frame:

STAR: special register , kept identi cal to LEX except on return from a PUSH

LEX: pointer to current lexical unit
- 

- 
STAA T: pointer to current state structure

ARC: pointer to current arc structure

ARCNO: current arc number within state; used f or trace printing

RETRN: contains the IC to return to on POP, and the base pointer associated with the
state from which the last PUSH was done

Register values and list heads are allocated above these items , followed by d y n a m i c
allocations of nodes and list elements.

The Word NEWFRAME is used to establish a new frame. It sets up a new state frame as
described above and copies all the previous item data into it. The complementary word,
OLDFRAME , restores the previous frame as described above.

The actual transition to a new state is done in two steps. First , the code doinq the tran-
sition, which has the name of the new state stored within it , calls t - ND SIA 1E , which ~inds
that name in the dictionary and returns its code word on the stack and in S~ AA1 . Next ,
a SKPTO is called, and it transfers control to the address on the top of t h e  stack. Ilote

—,-—- ,-.--~-



- :4.T~~~~~ ~~ -~~~~

that this is done at the same level of the return stack.

2.4.5.1 Al gorithms f or A TN Processor Elements
Element Algorithm
State Entry Set ARC to first arc in state , go through ARC

Arc Entry NEWFRAME

If two conditions present , AND them;

If top of stack true, put poinier to next lexical unit on stack
(current unit if JUMP arc); if PUSH arc , set SNDP to k~p-of-
dictionary in case a SENOR is done;

If false , OLDFRA ME, set LEX to next alternate lexical unit (if no
next alternate , reset to first alternate , update ARC), go through
ARC

Top of stack-)LEX , get called state , go to it

TO Assign IC + 1 ‘ and pre vious base pointer to RETRN, clear registers
and lists , move in any SENDRs from top of dictionary, get called
state, go to it

POP Return Get IC and base pointer from RETRN, copy base pointer ’s registers
and lists, arc , state , and return data into current frame , TOS into
STAR , go to postactions through IC

End of State Treat like false branch of ‘ !

AN Start Set: LEX to first lexical unit, STAAT to ATN start state , RETRN to
ATN finish code; go through STAAT

I-. UN Finish Print structure in STAR if tracing; return to caller of PARSE

2.4.5.2 Code Structures for Tests Here we show the structures compiled for each type
of test in the arc condition section. In the case of multiple tests , two consecutive tests
will be followed by a reference to AND or OR. A capitalized word shown here means a
ref erence to the appropriate Word.

The Word SKIP causes the (C to be set to the contents of the following word , thus skip-
ping intermediate words. CMPWRO and NEGWRD compare the literal string pointed to by
lOS with the string from the lexical unit pointed to by 20S, and return true or false,
respectively. TSTCAT and NEGCAT cneck that the feature vector pointed to by lOS is a
subset of the feature vector in the ‘ .‘xical entry pointed to by 20S (i.e. that the logical
AND of the vectors is equal to the vector pointed to by TOS). [FOS] checks that TOS
points to the end-of-sentence lexical unit. LIT puts the following word on lOS. 

~~~~~~~~~ 
-
~~~~~

_
.r~~~~ A~

_
~
_ - ...~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,- . 


